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STRESS ANALYSIS BY RECURRENCE FORMULA. CO? REINFORCED 

CIRCULAR CYLINDERS -UNDER LATERAL LOADS 

By John E. Duberg and Joseph Kempner 

SUMMARY 

A recurrence formula is developed for the stress analysis of 
reinforced circular cylinders loaded in tile planes of their rings. 
In contrast to the elementary engineering analysis, deformations 
of rings and sheet are considered. The recurrence formula in 
conjunction with appropriate boundary equations can "be used to 
obtain sets of simultaneous linear algebraic equations. The solu- 
tions of these equations enable the stress analyst to find the 
shear flows and direct stresses in the shoot, as well as the 
shear forces, axial forces, and bending moments in the rings. 

In order to reduce the amount of computation involved in the 
stress analysis of relatively long reinforced cylinders, an approxi- 
mate method of analysis is presented. In this method the cylinder 
under consideration is assumed to be infinitely lone, anä. the 
recurrence formula is treated as a fourth-order finite-difference 
equation. It is reconmen&od that the approximate solution be 
utilized for the stress analysis of cylinders loaded at rings 
located two or more bays from external restraints. 

nraaoDUCTioN 

Experimental data on stresses in reinforced circular cylinders 
indicate the inadequacy of the elementary theory of bending and 
torsion when applied to the relatively flexible shell structures 
used in airframe construction. Several investigators have pre- 
sented methods for the stress analysis of cylinders laterally loaded 
at the reinforcing rings (references 1 to 3). The theory of refer- 
ence 1, developed only for the case of a one bay cylinder, involves 
the assumption that stringer strains can be entirely neglected and, 
consequently, leads to inaccurate results. The more precise theory 
of references 2 and 3, developed for cantileverod cylinders having 
identical bays, becomes tedious and unwieldy when extended to non- 
uniform cylinders. 
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The present paper contains the development of a general 
recurrence formula suitable for the stress analysis of cylinders 
that may "be nonuniform in construction, arbitrarily supported at 
the boundaries, and arbitrarily loaded in the planes of the rein- 
forcing rings. The development is based upon tho maintenance of 
continuity of deformation between the'rings and shell. In any 
particular problem the recurrence formula together "with appro- 
priate boundary equations are used to obtain sets of simultaneous 
linear equations for the corrections to the stresses given by the 
elementary theory. (For a cantilevered uniform cylinder tho results 
obtained in this manner are identical with those obtained by tho 
method of reference 2 or 3.} 

If a cylinder is composed of many bays, as in conventional 
fusolago construction, the number of simultaneous equations 
requiring consideration may bo .prohibitive • For a uniform cylinder, 
however, good approximations to the corroction strossos can be 
obtained if tho cylinder is assumed to be infinitely long. The 
recurrence formula for this case is solved as a homogeneous finite dif- 
ference equation, of the fourth order and yields a relatively simple solu- 
tion. For practical purposes this solution can be applied to . 
arbitrarily supported cylinders provided the lot:ds are located a 
few bays from external restraints, "When tho recurrence formula, 
together with the boundary equations presented, is applied to a 
cantilevered uniform cylinder discussed in reference 3, good agree- 
ment is obtained among the recurrence-formula solution, difference- 
equation solution, and experimental stresses. 

SYMBOLS 

A = E6f 

XL3 

B = Bt'R2 

Gtl2 

C function of ring loading 

D n 
_ Kß* * 

7 2 
'n 

*) 

E    Young's modulus 



NACA TN No. 1219 3 

G- shear modulus 

H axial force in ring 

I moment of inertia of cross section 

L length of bay 

M tending moment 

Mc concentrated ring "bending moment 

P radial load 

Q        static moment about neutral axis of cross-sectional area 
lying bet^ween extreme fiber and plane under considera- 
tion 

R radius of cylinder and ring 

T tangential load on ring 

V shear force 

a, b Fourier coefficients 'in Fourier expansions of q, 

c distance from neutral axis 

i, k general numbers of "bay or ring 

m designation of root bay .'..'-. 

n general number of Fourier coefficient 

q. shear flow in skin 

t thickness of skin 

t * effective sheet thickness, that is, thickness of all 
material carrying bending stresses in cylinder if 
uniformly distributed around perimeter 

u, v, w   axial, tangential, and radial displacements of points 
on cylinder 

x, y, z   axial, tangential, and radial coordinates of cylindor 
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<x arbitrary constant of Integration 

ß =3 + £L^ n       3A7 

n 2 - 6B 7^ a -2 + n       12A7 

7 = 
r£(f ' if 

X,  \i.,   u . constants dependent upon bay lengths 

p-, = — cosh -1 n v^-\^T-^ 2     V\ 2 "/ 

a        longitudinal direct stress in skin 

cp        angular coordinate of point on cylinder 

1      1      , -1 v_ = — cosh n      2 
ßn " 1 

2 

•v        1        -1 ßn " 1 
2 

Subscripts: 

B                    rigid 

m                   moment   . 

r                    radial 

t                    ta. ngential 

ßn + -1> 
n 

j^A- 
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STRESS ANALYSIS OF REINFORCED CYLINDERS 

Inadequacy of Elementary Theory 

The elementary engineering theory for "bending and torsion, of 
reinforced cylinders loaded at the ring reinforcements yields the 
well-known formulas Mc/l for direct "bending stress, VQ/lt for 
shear stress due to "bending, and T/2At for shear stress due to 
torsion (where T and A are the torque on cross section and the 
area inclosed "by perimeter of croBS section, respectively)• This 
simple theory iB based upon the assumption that radial displace- 
ments of "both rings and sheet can be neglected. Since the dimen- 
sions of most menocoque structures are such that radial displace- 
ments of the structural components cannot be ignored without 
appreciable inaccuracies J&. the results of analysis, the elementary 
theory must be modified $t> es not only to satisfy the laws of 
statics but also to maintain continuity between rings and sheet. 
The present development, consequently, is directed towards finding 
self-eq.uilibrat.ing stress distributions that, when superimposed 
upon the elementary streos distributions, yield results which, in 
addition to satisfying the lavs of statics^ preserve the continuity 
of the structure. These correction stresses are found from the 
recurrence formula that is developed herein. 

Basic Assumptions of Present Theory 

In the development of the recurrence formula that can be 
used to obtain the desired stress corrections, several simplifying 
assumptions are made. That part of the sheet area which is con- 
sidered to resist normal stresses is added to the stringer area 
and the combination is uniformly distributed about the periphery 
of the cylinder. This resulting combination is an effective sheet 
thickness t1 that resists normal stresses. The actual sheet area 
is considered capable of supporting only shear stresses. It then 
follovB that within a bay the shear stresses vary in the circum- 
ferential direction but are constant in the longitudinal direction. 
Inext-en&ional deformation of rings and sheet is also assumed, and 
Poisson's ratio is considered to be zero. 

Development of Recurrence Formula 

Procedure.- For the skin of any bay i of the structure (see 
figs. 1 and 2), the corrections to the elementary shear flow, 
direct stress, axial displacement, and radial displacement are 
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each expressed as Fourier series with undetermined Fourier coef- 
ficients. Through static, elastic, and-geometric considerations 
of rings and sheet, a recurrence formula is obtained relating the 
Fourier coefficient of the shear flo-w of any hay i vith the coef- 
ficients of the two hays on each side of hay i, that is, hays i+L 
and i+2 and hays i-1 and i-2. From the recurrence formula, simul- 
taneous equations may he obtained from •which the values of the 
shear-flow coefficients are determined. With, these values the 
loads and stresses in the rings and sheet can he found. 

Sheet stresses and, deformations. - The 3ystem of coordinate 
axes to he used is shovn in figures 1 and 2. Positive displace- 
ments in x-, y-, and z-diroctions are designated u, v, and v, 
respectively. For convenience, the external loading on the rein- 
forcing rings of a cylinder is considered to he either symmetrical 
or atitißyrametrical about <p = 0°. (Soe figs. 1 and 2.) In accord- 
ance -with the basic assuorpt-Lons the corrections to the elementary 
shear flow, direct stress, axial displacement, and radial displace- 
ment at any point (x.,  cpj  in bay i can be expressed for symmet- 

rical loading as the Fourier expansions 

^(9) = 2_  ein Bin **? t1*) 
n=2 * 

ai(xi> *P) " /_  ^in^i) cos ** (^ 
n=2 

\(x±>  <P) B l_  "in^) cos "P Cle) 
n=2 

00 

wi(xi' *) "£-  ^nfa) COS ^ ^ 
n=2 
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respectively in which a^, ain^Xj_), Uinf31!/' anö- win(^i/ are 

Fourier coefficients. Inasmuch as only corrections to the ele- 
mentary stresses and displacements ar'e desired, Fourier terms 
corresponding to n = 0 and n =-• 1 are omitted since they corre- 
spond to the elementary stress and. displacement distributions • ; 

If antisymmetrical loading is considered, the harmonic func- 
tions in equations (1) are replaced -by-, their' cöfunctions. It is 
then convenient to designate the Fourier coefficient of the shear 
flow "by bin. ..'•••-•- 

Relationships among sheet stresses and deformations.- Within 
any hay i the following relationships exist, (fig. 2): by the-. • 
equilibrium equation •.-••• 

^lfe'. y)  1 5^(9) , t^ ^ ••>•'•  v. + A-^m^o •••—•—- (2a) 

br^ R  09 

by Hooke's law for direct' •stress 

ai(xi, <p)'=-E \:' "['':   '"     ''•"''*"'-'       "(2b) 
one» 

,by Hooke's law for: shear stress- 

(9)      ! oUi(xi,  (?)      övi^i, <?) 
(2c) 

."•/••• „ - #. . . 1. 

and by the inextensional deformation equation (p.'208 of'refer- 
ence k) 
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•where 

t.        actual skin thickness of bay i 

t ^       effective skin thickness of bay i 

E radius of cylinder 

E Young's modulus 

G shear modulus 

v.jfx^, cpj circumferential displacement of any point in "bay i 

If equations (la) and (lb) are substituted into equation (2a) 
and if coefficients of like cosine terms are equated, the folio-wing 
expression for the Fourier coefficient o^fxA is obtained: 

fojnfci) n_ 
öxi •" Rt *rin 

Integration of this equation yields 

nxj_ (S •"•"-3. 
rV = " iv"ain + ffin(0) (3) 

in \diich    o*in(0)    .is the direct-stress Fourier coefficient at    x,»0. 

Similarly,  elimination of   öln(x±)    £rom equations (lb),   (1c), 
(2b), and (3)  and subsequent integration gives 

M3*) m. * SJ^ln + i^inC°)  + ^(0) (k) 

in iwhich   u^fo)    is the axial displacement coefficient at   x, = 0. 
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'Elimination of v^Yxp qA from equations (2c) and (2d) yields 

OXj Gt±  cxp   E    ^ 

Substitution of equations (la), (lc), (id), and (4) into this 
relationship and integration yields the following expression for 
the radial displacement coefficient: 

"3 ^      2 2        2 / \  nx<     n~x.-->     n x»        n x^ 
vin(zi) - rr^m " -—-«in + ~^W0) + -r^nC0) + ^in«»  <3) 

in -which vin(0) is the radial displacement coefficient of the 
sheet of hay 1 at x. = 0. 

Appropriate changes of the subscripts i in equations (3) 
"fc° (5) permit the application of the equations to each hay of the 
structure. 

Hing deformations. - The radial displacement at any point cp 
of a synmetrlcally loaded circular ring can he expressed as the 
Fourier expansion (see pp. 208 and 209 of reference h) 

CO 

Pi^l ,  = )  (vin)   cos "P U1 Jring  £~ v ^'ring n=2      ^ 

It can he sho-wn hy the method-of -virtual vori: (pp. 209 and 210 
of reference h)  that for inextensional deformation the radial dis- 
placement coefficient (v±n) ?or a ring of radius £ and 
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constant moment of inertia I± • that is loaded "by the shear flows 
in bays i and i-1 and by an arbitrary set of symmetrically applied 
external forces is (fig. 1) 

V ^/rlng  El, • / 2  -Ä2 ' 1 n\n •• 1/ 

In equation (6) the first expression on the right-hand side repre- 
sents the part of the radial displacement coefficient due to tho 
correction shears only, whereas the second expression represents 
the part of the displacement coefficient due to the external loading 
and the elementary shears. Yalues of C^ are given later for 
particular loadings. (See equations (23).) 

Continuity relationships.- The following expressions can be 
obtained from continuity considerations of the rings and sheet of 
bays i-1, i,.. and i+1 (fig. l): 

ffi-l,n(Li-i) - <rin(0) (7) 

*in(Li) = °i+l,n<°> • W 

^-i,n(Li-i)••- Um(0)-" (9) 

Uin(Li) " Vl,n(0) W 



NACA TN No. 1219 11 

wi-l,n(0> - (vi-l,n)r; ing 

vi-l,n(Li-l) " (win) ring 

(11) 

*in<°> - (Vin). ring 

vin(Li) - (wi+i,n) ring 

(12) 

wi+l,n(°> = (wi+l,a). ring 

wi+l,n(
Li+l) - (

vi+2,n). ring 

(13) 

Equations (7) to (10) are conditions of continuity of a    and u 
across the "boundaries "between "bays i-1 and i and between bays i 
and 1-KL. Equations (11) to (13) state that the radial deformations 
of the rings "bounding hays i-1, i, and i+1 aro equal to the sheet 
deformations of these bays at the rings. Implicit in equations (11) 
to (13) is a statement of the continuity of v of the cylinder 
across the boundaries between bays. 

Recurrence formula.- Substitution of the expressions for 
ffln(Ii)» Uin^i)' vin(*i)> «*• (V^)rlne    ^uatlanB (3) 

to (6). respectively) in the continuity relationships (equations (7) 
to (13)) yields the following seven simultaneous equations in 
which n = 2, 3, h,   . . . _ 
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tfln^°)   - "i-l,n<0>  + ——« Et i-1 
 aI-l,n = ° 

^i+l.n1 

r>T.> 
So) - ata(o)  '•^T~am - ° 

Wo) " Vi,n(°> + S^1"1'* " T %^i-l,nCO) - 0. 

nil 

^    ain ' ai-l,n      _ *%-! jf^iL, 

n2Li-l2 ,  v       n2^-! 

SI, 

ft      al-l,n 
II-1     n(n2 - if 

••v O 

R1»  al+l,n " ain        = f^I.    - nJLl 
EI^ n(n^-l)2 + i+1^=<in"6^t-; 

+ S5£    (0)  + ^ (0)  + SL finJLfii 
2ER    ln B      to El,       /p        v? A    n^ - 1) 

E^ . ain " ai-l,n ,  _ 
31,        / o        \2 ln 

E^      aI+2,n " ai+l,n      _ "ki+l 

>   (HO 

EIi+£     n(n2 - l)' 

2 2 2 
n Li+1 _ y_x       n Li+1 

ai+-l,n      .   o  ,      ai+l.n 
6BE-f1+1       ' 

-%+l,. Xo) 

u.   *ft     ai+l,n " aln      _ ri T"      ;rr + ci+i,n 
***   n(n2 - l) 
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If the six quantities ffi_1 n(0), 0^(0), ffi+1 n(0), 

Uj.-L n(0), -0^(0),    and ix^ n(0) are eliminated from the 

seven expressions of eguations (Ik),  the following recurrence 
formula relating the Fourier coefficients a of five successive 
bays is obtained: 

+ a i-l,n 
v. 1  f1+^l^  ^i-l " ? 

Li-1 6A±-1? [-2>nte) 

vl     "2/       *i       &l-j£\      v3 *    +   (1  +   —-  +      } -5-  =—  +    
*i      Il\      Il+l 6-V    /     Ii+1      21 

u, 

'in *iV 

+ a i+1, n 
^+1      Il+1\      Xi+2 ^+17 

e-|j.C> i+2,n\ h*v 

- -   |>Ci-l,n " (\ * ^)Cin + (»2 + u
3)Ci+l,n " Vi+2,n]4-    <«) 

E^nr 

in which 

1      Li-A1!        ^V 

^ = -12 + + i) 
2 Va-rl Li+1 / 

*3 = ££?•} 
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1?,   = _: 1 ( L± + h& + ia=i +1) 
Lj,2 VLi+l   ' Li+1       Li 

6+. 
Ai = 

ITt 

1,1,3 

Bi = 
Et 'jR* 

7 = 

n2(n2 - if 

If the cylinder is of -uniform construction, equation (15) can 
"be considerably simplified and reduces to 

ai-2,n + 2?nöi-l,,n + 2Pn
aln + 2?fnai+l,n + ai+2,n 

^1-1,a ' 3Cin + 3Ci+l,n " Ci+2,n)-jr- (16) 

in -which 

.      n2 - 6B 
7    =  - 2 +  •  
n 12Ay 

K = 3 + n 
n2 + 3B 

3A7 
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The recurrence formulas (15) and (16) relate the nth shear- 
flow coefficient of "bay i ,withthe corresponding coefficients of 
the two hays on each side'of hay i. ..One equation similar to equa- 
tion (15) or equation (l6)" can'consequently be written for each 
bay of a cylinder, provided that at least two bays exist on each 
side of this bay* For antisymmetrical loading, equations (15) 
and (16) can be applied if the-Fourier coefficients a are replaced 
by the coefficients b. 

Boundary Equations 

Since the recurrence formula applies only to a bay having two 
bays on each side, incomplete, or boundary equations must be found 
for each of the two bays at each boundary. Boundary equations, 
consequently, are presented for bays m and m-1 for a cylinder fixed 
at the right of bay m and for bays 0 and 1 for a cylinder free at 
the left end of bay 0. (Bee fig. 3.) By suitable combinations of 
.the boundary eq.uations and by proper manipulation of the subscripts, 
these equations can be used for the analysis of cylinders fixed at 
both ends, unrestrairiod at both endSj or unrestrained at one end 
and fixed at the other end. 

Procedure for deriving boundary•equations.- The general" recur- 
rence formula was derived by combining the equations for «j^/xjj, 

iijjjj/xjV w. /xjV and ('w±n) (eq.uations (3) to (6)) with the 

general.'contiiiuity conditions (equations (7) to (13)) and then 
eliminating all Fourier coefficients except the a'a. In the deriva- 
tion of the boundary equations,' the .defining equations (3) to (6) 
are combined in a similax1 fashion with (l) all of the continuity 
conditions .(equations (7) to (13)) that do not include quantities 
in nonexistant bays or rings and (£) the boundary conditions. 

Thus, for clamped edges (see fig. 3) the boundary equation for 
bay m is obtained by combining equations (3) to (6) with the con- 
tinuity conditions 

HW =• v(0>- 

*-l,n(0) - (%-l,n)ring 
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Vl,n(Vl) - (im). rin.'? 

vwS°) * (v) ring 

and the boundary conditions 

inn1 (Lm)=° 

*W(L
m) - ° 

arid7-then eliminating all the Courier coefficients'e;xcept the a's. 

• " Boundary equations for fixed e^.- If the foregoing.procedure 
is followed, the boundary equation 'for bay m (fig« 3J is found to 
be. .    : 

.    ,". *rcr2. 'nCi) + ^-1,11 
Hi   L  •   ^-1   ' &m-l. - n \     M2 

I x -1—• ' • i     + —»      i   • n i i —   I + —°- 

^m-l7   J    Xm •"m-i Y'.  '^ 

. ,   "-a 
-fr-i   • ran 

^3: n. 

V ^V     ^ J '^w. 

[*lVl,n - (^1 + ^2)^1 
E 

(17) 

in -which 
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"l* 
m-1 

»z - -^^- * i: 

"3 * L a W-l 
m    N 

and similarly for "bay m-1 

^-3>n\^) + £W'n 

^  A  + ^± + ^-g " n^ V.   ^5 
V-2 %-! 

^-1,] 
  + —i-(1 +      +    |+ — +  u 

^-l    3Bl- m \   \-1V17 

+ a mn ° " |>Cm-2,n " K + ^)Cm-l,3 

0*5 + ^N] JE  
(18) 
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Lm-2      ^-2 

V2
2 Vm-i      V 

t»« - JLJ&El + 5ü£ + i\ 
w ^ ha. 

i Aa-a , ., 

V \M 

For cylinders of uniform construction the fixed-end "boundary 
equations (if) and (18) for bays m and m-J., rospoctively,  reduce to 

m-2,n     V,    a       / m_1^ii     \   n n       / mn 

(^-^"^Vv .'•• 
>    (19) 

**r$,n + 2VW-2,n + £(3nVl,n + (^n + X)V 

= (Cm-2,n " 30a-! n + 30^)—- 
ITny 
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For antisymmetrical loading the Fourier coefficients a In 
equations (17) to (19) are replaced "by the corresponding coeffi- 
cients b. 

In order to apply equations (17) to (19) to the left end of a 
cylinder, the signs of the shear-flow coefficients crust he changed 
and the subscripts of the various terms altered» If the cylinder 
of figure 3 Is fixed at the left of hay 0, subscripts m, m-1, . . . 
are replaced by 0,1, . . ., respectively, for those terms pertaining 
to the sheet of the hays and by 1,2, . . ., respectively, for those 
terms pertaining to the rings. 

Boundary equations for unrestrained end»- The boundary equa- 
tions for the unrestrained end of the cylinder sho-wn in figure 3 
aro also found by following the procedure outlined. The boundary 
condition at the free edge is 

'On (0) 

The boundary equation for bay 0 is found to be 

*0n 
>-l/  IQ 
-±fl + -+ «v 

+ a2n( • 

-& 1 On ' (xx + ^)cm (20) 
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in -which 
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x1 = 
L0L1 

^ = 

V 

\. » . i Ao 
3    L:

2
^ 

+ l 

Similarly,  the boundary equation for bay 1 is 

\^n 

*0a' 
\2 

a  £wy   ^ *-   + a. 
\2] 

1 + -± + 
*£ 

681"n* V H + ^ 
6A- •i? ^      21, A lAl7 

32n 
x2      ?^ /      Ig      ÖB^ " n 

— + — (1 -1- — +   
io     x2 y     I3 oA^r 

+ a_   { ~ 
3n\ 1. 

H^n? 
(21) 
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•where 

For cylinders of uniform construction the unrestrained-end 
boundary equations (20) and (21) for "bays 0 and 1, respectively, 
are 

(27n + 2ßn + l)a0n + (27n + l)*^"+ a2n - - (C0n - 20^ + C^ 
El 

El 
2Voa + 2'3naln + 2V2n + *3n = (°Qu " 3C1* + 3C2n " °3n)-T 

> (22) 

For. antisymmetrical loading the coefficients . a are replaced 
"by b in equations (20) to (22)* In order to apply equations (20) 
to (22) to the right end of a cylinder^ the si^ns of the shear- 
flow coefficients must be changed and the subscripts of the various 
terms suitably altered* 

Special boundary equations.- The boundary equations developed 
are suitable for cylinders having four or more bays» For the 
special case of the center bay of a three bay cylinder, the boundary 
equation, vhich depends upon the conditions at both boundaries, can 
also be found by means of the general procedure previously outlined. 
The boundary aquations for cylinders of one or two bays can be 
similarly derived. 
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Application of Recurrence Formula and Boundary Equations 

Specific loadings.- As mentioned previously, the stress 
analysis of a reinforced cylinder arbitrarily loaded in the planes 
of the rings can be carried out conveniently if the stresses caused 
by the symmetric and antisymmetric components of the external 
forces are suitably combined. Further simplification of the 
analysis is obtained if the loadings are resolved into concentrated 
radial forces, concentrated tangential forces, and concentrated 
bending moments. For each ring loaded at 9 = 0° (see fig. k)  the 

obtained in the derivation of equation (6) 'in' 
for a concentrated radial force, a concentrated 

load function 1 

f°r Wring' 
tangential force, and a concentrated bending momont are, respec- 
tively, 

• in " JtR Eli 

tin  jiR El. 

»Ir EL, 

(23) 

where P, T, and Mc are the symmetrical radial load, the anti- 

symmetrical tangential load, and the anti symmetrical bendJjng-moment 
load, respectively, acting on any ring i at 9 = 0°. 

Simultaneous equations.- A typical set of equations applicable 
to a cantilevered uniform cylinder with six bays (m = 5 in. fig. 3) 
is presented" in table 1. The first two and last two rows wore 
obtained from, the unrestrained-end and fixed-end boundary relation- 
ships of equations (2ü) and (19), respectively, end tlio inter- 
mediate-rows, were obtained from the recurrence formula of equa- 
tion (l6). For a nonuniform'cylinder these'expressions are 
replaced by those of equations (20), (ul), (lG), 0-7), and (15). 
It is to be noted that the coefficients of the unknown a's 
and b's are independent of C.  (load term of equations (23)); 
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consequently, numerical solution of the equations (reference 5) 
for various loading is greatly facilitated. A sot of simultaneous 
linear equations simi3.ar to that of table 1 must he solved for 
each n-value chosen. The number of n-values. required depends upon 
the desired accuracy. The Fourier coefficients obtained for a 
given load P, T,  ox* M  at cp = 0° can he used to determine 

the coefficionta for similar loads at any other value of cp since 
the z-axLs (fig. 2) can he chosen to coincide -with any radius. 

Stresses and loads in cylinder.- After the coefficients a 
and b are computed, substitution in the formulas (Al) to (kk) 

' presented,in-appendix A enables the stress analyst to compute the 
shear flow in the actual sheet, tho direct stress in the fictitious 
sheet, and the moments, shoars, and axial forces in the rings. The 
stresses due to loads acting at several rings end at various values 
of cp can he superimposed to give the stresses caused by these 
loads acting Bimultanoously. 

APPE0X1MATE METHOD OF ANALYSIS BT SOLUTION 

OF FINITE DIFFERENCE EQUATION 

Difference-Eq.uation Solution for Infinitely Long Cylinders 

Equation (15) referred to previously as a general recurrence 
formula is also a fourth-order finite difforence equation -with 
variable coefficients. Since the variable coefficients prohibit 
the solution of this equation in closed form, Only the solution of 
the equation that pertains to a uniform cylinder is discussed 
herein. A general procedure for solving the fourth-order finite 
difference equation "with constant coefficients (see equation (l6)) 
is presented in reference 6. Whon tho right-hand side of equa- 
tion (16) is sot equal to zero, the following homogeneous equation 
is obtained: 

ai-2,n + 2?nai-l,n + 2ßnain + ^nai+l,n + ai+£,n = °    (**> 

From reference 6, the general solution of this homogeneous equation 
consists of the following six independent solutions: for 

fan " !) 
Dn = 2   g   >1 a*d ?n<° 

7n 
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-WE/ a.     = e In 
11 K C0S kV °&n Sin k*n) 
W 

+ e n (a3n cos k%n+ a^ sin k%n) (25a) 

for    D    > 1    and   7n > 0 

\kJc. 
ain =  (-Dke  * (o^ cos k%n+ c^ sin k%n) 

+ (-l)keVfek(o3n cos k^-f o^ sto k%n) (25b) 

for   Dn < 1    and   y   < 0 

-\l/nk 
ain = e (^ co8h fcPn 

+ ^n sinh ^n) 

\lr  k 
+ e n ("Sn cosh kpn + %n 

sinil ^n)        <25c) 

for Dn < 1 and 7 > 0 

= (-1) e n ta, cosh kp + ot, sinh kp \ 

+ (-l)kQ
Vn (a^ cosh kpn + aj^ sinh kpn)    (2%) 

ain 

for Dn = 1 and 7 < 0 

äin ' 9 n- («la + °enk) + e n (a3n + <Vk)        (25o) 

for Dn = 1 and 7n > 0 

ain = ( -^^K + ^nk) + C-l)^^ + V) (25f) 
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in which 

v[/_ = — cosh" 
ßn - 1 vn ßn + l> 

25 

%_ 1 
n~ 2 cos 

ßn " 1 -Tl 

p = — cosh 
n  2 

ßn ~ 1 
2 

fc = i = 0,1,2 

and a, , ou , <x~,  , and a^n are arbitrary constants. 

The analysis of a uniform cylinder that extends longitudinally 
to infinity in both directions from a loadod ring is readily carried 
out with the aid of equations (16), (2h),  and (^5)« If the loaded 
ring is considered to be a boundary between the two halves of the 
beam and if no load other than that at the boundary is assumed to 
act, the difference equation (l6) with tho right-hand side set 
equal to zero applies equally well to ooth parts of the cylinder 
(see fig. 5)j consequently., only one-half of the cylinder need be 
considered in the analysis» Since the difference equation 
applicable is the homogeneous equation {UK),   equations (25) 
together with the appropriate boundary conditions are solutions of 
the present problem. 

The distortions caused by the concentrated load have no effect 
on the stress distribution in the cylinder at k =t»; therefore, 
a^ = 0. The first term on the right-hand side of each of equa- 

tions (25) satisfies this condition; however, the second term does 
not satisfy this requirement and, hence, must vanish. The solutions 
then that are compatible with the boundary condition at infinity 
are from equations (25) ? for D > 1 and 7n< 0 

ain= e 'v(^ cos 
k V °2n sin k%J (26a) 
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for D > 1 and 7n > 0 

ain = (-l)^"^^ cos k^+ o^ sin k^)       (26b) 

for Dn < 1 and 7n < 0 

•i/nk 
ain = e 

n jcc^ cosh kpn + a2n sinh kpß) (26c) 

for Dn < 1 and 7n > 0 

ain = (_1)ke n («in cosh kPn + °^n  slnh ^n)      (26d) 

for Dn = 1 and 7n < 0 

ain - ^(«ta + °2nk) <26e> 

for D_ = 1 and 7„ > 0 n       .  n 

ain = (-ljV^"^* agnkj (26f) 

From the conditions of symmetry about the loaded ring, 
modification of equation (l6) leads to the determination of two 
•boundary equations applicable to the present problem. If the 
load function at the loaded ring is designated CQn (see equa- 
tions (23)) and equation (16) is -written for bay 0, the first 
boundary equation is 

K - 2?n)a0n + (27n ~  ^in + a2n " '^Oa^ (2?) 

ITn7 
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since    aQn = ~a-2j,    e:nö-    am = ~a-2n*    If 91uation (^  is bitten 
for bay 1,  the second ••boundary equation is seen to be 

On - tyon + 2ßnaln + 2VW + V 
+ a- " C0n -T~ (28) 

since a_ = -a n • 
On    -In 

The "boundary equations (27) and (?8) permit the determination 
of the arbitrary constants ct^ and cv^. Jor a given value of n, 

substitution of the appropriate value for ain from equations (26) 

into equations (27) and (28) yields a sot of two simultaneous equa- 
tions; for example, if Dn > 1 and 7n < 0 

«In (2ßn " 27n) + (2rn " 1)e    * COS %n + e      * COS ^n 

+ a2l (27n- 1)0    nsin%n+e      n sin 2%n =  -3C, 
El 0n ^T~ 

«In 
_\j; -2ilf ~3ty 

(£7n " X) + 2ßne    n cos "Xn+ 27ne      * °°S ^n + &      * °°S 3^n 

-t, -at 
•    -^ II + ^nH6" ^ Bin V 2V      ^^ £V e "       Sin 5%n> C0n 3 B^n7 

(29) 

The constants ct,  and ctn  are obtained from the solution of 

these equations. To each value of n there corresponds one value 
each for a-^ and ctg^. Since Dn and 7n   are functions of n as 

well as the elastic properties of the cylinder, for a particular 
cylinder more than one of equations (26) may be required, for the 
determination of all the values of cco^ and ov^' Wi-ch the values 

of these constants determined for each value of n,     corresponding 
values of ain for each bay are obtained from equations (26) . 
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As In the application of the recurrence formula, 
spondlng to several harmonics, that Is, n varying from 2 to the 
value that yields the desired accuracy, must be found. For anti- 
symmetrical loading, a is replaced by b in equations (2b) 
to (29). The values of the coefficients a and b obtained are 
substituted in equations (Al), (A2), and (AH) for tho desired load 
values. Since the expression for the direct stress in the sheet 
now involves an infinite summation along the cylinder of the shear- 
flow coefficients, simplified formulas for the direct stresses at— 
any ring k are presented in appendix B. 

If equations (27)  and (28)  are replaced by the unrestrained-end 
boundary equations  (22),  with all values of    C.,n    except    C^    sot 
equal to zero, a tip loaded cylinder extending to infinity in one 
direction can be analyzed with a procedure similar to that developed 
herein. 

Application to Finite Cylinders 

"Whereas a concentrated load causes distortion in the region 
In the immediate vicinity of the load, for most practical purposes 
the part of tho cylinder a few bays away from the load can be 
assumed, undisturbed. Consequently, if the load is located a 
sufficient distance from external restraints, the distortions of 
the cylinder in the region of the load are independent of those 
restraints. If then a uniform cylinder of finite length Is to bo 
analyzed and this cylinder Is loaded in a manner 3uch that the 
load is not in the proximity of an external restraint, the ele- 
mentary stresses and loads are found äs usual by considering the 
cylinder to bo finite, whereas the corrections may be found by 
use of the difference-equation method by considering the cylinder 
to be infinite. Because the effoct of the. concentrated load 
dissipates quite rapidly, values of a and b are usually of 
interest only for those bays in the vicinity of the load. The 
desired forces and moments in this region can then be determined 
as before from the equations given in appendixes A and B. 

Adequacy of Difference-Equation Solution 

Although the solution in closed form of the problem of a 
uniform reinforced circular cylinder is exact only for infinitely 
long cylinders symmetrical about a loadod ring, comperisons of the 
finite-difference-equation solution, tho recurronco-formula solution, 
the standard solution (reference 7); and experimental data for 
cylinder 2 of reference 3 were made for a cylinder fixed at one 
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end, unrestrained-at'the other, ahd': haying' on^;'fcSir;"bays/ .The. 
cylinderv/was loaded-with a- concentrated' raMälj force ät^a ring 
locatecL:two~ bays:" from ©ach'ehd. "-(See'fig. -S'.)'- "ifi; figures'; J' and 8 
curves' are".given• for"'bending• moment's in -the loaded1 ring and^ädj'acent 

•.•rings, as ^11.as-for the-shear flows in the -two 'bays; adjacent 'to 
the loaded.- ring.. -Inasmuch as the .cyl'ihder contains'reiätive.ly . . 
few bayg; an extreme case 1B represented' that Is unlikely to. be" 
met..in practice. /T-he'more' bays' a • cylinder Iia§"the; more clo'sely .. 
it approximates an infinite cylinder fof which -the finite-difference- 
equation, solution is. exact; •"conse^ueritiyy 'the'; ^ö'öd .a'gröemerit shown 
in f igures JJ.. and 8 among the'* finite-differ'^ • 

• the recurrence-formula s'olutionand'experifflent^i'data' indicates, 
that the; simplified solution is.'quite adequate.' ' -"_'.' /'/ ". ' '. ,'.'. 

Advantages of Difference-Equation Solution 

Since airplane fuselages' approx>TTwt'ing1 circular' cylinders are 
composed of a relatively-'large number1 of -piya'-ff or' moist^ practical 
cases, the simplified solution-., should be ä good approximation to 
that obtained by the use of the recurrence formula. As mentioned . 
previously, when the recurrence formula is applied, sets of 
simultaneous equations containing as many unknowns as there are 
bays in the structure must be solved for each n-value required. 
For structures having many bays the amount of computations involved 
may be prohibitive; however, no such computations are involved when 
use is made of the infinite-cylinder solution. In addition, this 
solution is adaptable to the construction of design charts similar 
to Wise 's charts of reference 7• The analysis of any long uniform 
cylinder is dependent only on the values of the structural 
parameters A and A/6. For various representative values of 
these parameters, charts can be constructed from which the analyst 
can determine desired stress coefficients. For extreme cases, such 
as a cylinder loaded only one to two bays away from a restraint, 
the recurrence-formula method is recommended for accurate solutions. 

CONCLUDING- EEMARKS 

The recurrence formula developed in the present paper facili- 
tates the stress analysis of circular cylinders loaded in the planes 
of the reinforcing rings. The cylinders can be composed of bays 
of different cross sections and lengths and can be supported by 
rings having different moments of inertia. The boundary equations 
presented are applicable to cylinders fixed at both ends, unrestrained 
at both ends, or unrestrained at one end and fixed at the other end» 
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For the. analysis of cylinders composed of relatively: fey 
bays, it"16 recommended that, the recurrence formula-be used- to, ' 
obtain sets-of simultaneous linear algebraic-.equations.' The-., 
solutions of these equations lead'-to:.:an accurate-determination- of 
the Btresses^in the rings .and sheet of-the cylinders. The analysis 
of cylinders;composed of many hays, as are semimonocoque fuselages, 
can more ' conveniently he accomplished by the solution of the . 
recurrence, 'formula.'as .a finite-difference equation. >• Although the 
stresses• obtained with this -Sblutionvare .approximations to.-the 
more:accurate.stresses found with the simultaneous..equatione, for 
long.cylinders, the,computations' involved 'are considerably shorter. 
In addition/:.since for1 the-.thr.ee basic loads the.-stresses .determined 
by this method are dependent- only upon the 'structural ..parameters' 
of the cylinder, charts facilitating the rapid determination of 
the stresses in reinforced cylinders can be readily constructed. 

Langley Memorial Aeronautical XabotfätojFy 
.-•National Advisory Committee 'for; Aeronautics 

.'. ' .Langley' Field, Va.y November 12, 19kd 

:       .  .. . , . K, - 

'.   *• 



NACA TN No, 1219 31 

APPEHDIX A 

FORMULAS FOB LOADS USD  STRESSES IS  CYLINDERS 

After the coefficients a and b are computed, the shear 
flovs in the actual sheet, the direct stresses in the fictitious 
sheet, and the bending moments, shears, and axial forces in the 
rings can be found -with the aid of the equations • fjiven in the 
appendix of reference 3. For the sake of completeness these equa- 
tions, -with some additions, are presented heroin. 

Shear Flow 

The total shear flov q.(<p) in any bay i for any ring 

loading on a cylinder aan be expressed as 

03 00 

2_.airisini*p+2_ <L±(v)  » % + /_  ain 
sin «P + l__  *in oos **P (A1) 

n=2 n=2 

in -which q_ represents the elementary shear flov calculated on 

the basis of rigid rings. For a cantilevered cylinder, qp is 
zero for those bays located betveen the tip and a loaded ring. For 
those bays between a loaded ring and the root, the values of a 

for a radial load P, a tangential load T, and a concentrated 
ring bending moment M , each applied to ring i at 9 = 0°, are 

given in table 2. Positive forces and bending moments are indi- 
cated in figure k.    If more than one ring is loaded or if the 
cylinder is not of cantilever construction, Pi, 9?^, and Mc. 

are replaced by the resultant radial, tangential, and moment load, 
respectively acting on a cross section of bay .i. 

Direct Stress in Skin 
t 

For a cantilevered- cylinder such as that shown in figure 3, 
if the longitudinal skin stress, at ring 0 is assumed to be zero, 
the direct stress at rin^ i is (see equations (lb) and (3)) 
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n=2 

h> 
'On f 0 

+ aln v~ + + a 
Ji-1 

i-l,n t' ncos ncp 
I-ly 

n_2    \ 0       • 1 i V 

in which CT-O is the stress given "by the simple engineering theory 

of "bending. Since the shear stress is constant in the longitudinal 
direction within a bay, cr varies linearly between rings. 

If the cylinder is rigidly fixed at rin£ 0 .as well as at 
00 

ring m+1, the initial boundary stress /    ^On^ coe n^ (for 

n=2 . 
symmetrical loads) must be added to the direct stress obtained with 
equation (A2). The value of the Fourier coefficient o0n(0) is 

determined for a cylinder having at least three bays from the con- 
tinuity condition 

wOn(Lo) = "(wln). 
rinc 

and the boundary conditions 

Uon(0) =0 

wnn(0) = 0 

together with the defining equations (5) and (6). The relationship 
obtained is 

„On(0). S£a>: 
0n    • Et! n 

(A3) 



NACA TN Wo.  1219 33 

in -which 

A'    - A0 - 

*iLo3 

For antisymmetrical loading,     a^      and    a        are replaced 
On      in 

"by Tb0n and b^, respectively. 

Bending Moments and Forces in Ring 

The bending moinents; shear forces, a.nd axial forces in the 
reinforcing rings of a cylinder arbitrarily supported at its ends 
are, respectively, 

Mj = Mp + B& )  • •*" ^—i-pü cos rap - R „2 Y ain " ai-l,n 

^2 n(n2 - l) n=£ 

CO 

:* /   -—i -t— sin ncp 
^ n(n2 - l) n=i 

CO 

'i - 'H 
V, s Vn - B y  -^ 3:L"jL-n sin rxp - E ^> ^ . bi-l^n coQ .^ I 
Hi • *R  + E Z_   /g  V  

cos °P " E 2- 
n=2 

•<aln"al-l,n) 

n=2   (n2 - l) 

(»2 - l) 

(*2 - l) 

> (Alt) 

sin n<p 

in which M^, V^, and H^ are the bending moment, shear force, 

and axial force in the rings, respectively, determined on the basis 
of elementary shear flow in the skin. Positive values of the bending 
moments and loads in a cylinder are indicated in figure h.    Formulas 
for Mg, Tg/ and -.'Hg corresponding to a radial load E, a tan- 

gential load T, and a concentrated ring bending moment M ,  each c 
applied to a ring i at cp = 0°,  are given in table 2. For rings 
not loaded externally, only the series expression in equations (A4) 
are required. 
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APPENDIX B 

DIRECT STRESSES IN INFINITELY LOITG CYUNEERS 

For the determination of the direct stress in the skin of a 
uniform infinitely long cylinder, equation (AiO can. "be replaced 
*7 

eg   a. 

0^0, <p) = crE + i 2_   ]T ala n cos rxp 
ü=2  i=c 

(Bl) 

or 

CO     x oo 

01(0,  <p) L    \ 
E      Bt' £- z a 

in 

lc-1 

I 
1=0 

a.;„ } n cos ncp m G&> 

in which only the coefficients ain are considered. In these 
equations. 0^(0. <p) is the direct stress at ring i=k. Corre- 
sponding to the six values of a.  from equations (a6), six 
solutions for 0^(0,  q>) can he determined ay summation along the 
cylinder. As an illustration of the procedure involved, equa- 
tion (2:6a) is used herein for the value of a. . Consequently, 
equation (B2)  becomes 

^(0, Cp) 

CO 

E + Rt7-^- 
n=2 i=0 

k-1 -»U k 
Y.  e" n (°ln C0S ^n^n, <** ~%a) 
i=0 

n cos n<p   (B3) 



The emanations from   1 = 0   to   i = m   end   i = 0   to   i a fc - 1   are readily accomplished vith > 
the aid of formulas 6.830, 6.833, arid yol, numbers 1£ and 13, of reference 8.   The resulting g 
formula for the direct stress at any riiv, k is for   D   > 1,    7  < 0,    and   i •= k = 0.1,1;,   .  ,  . »        -< n n it? ^ 

o 

to 
H 

' L    V   Hlr k aje** COB leVcos (*- l)5tn!+a2n K* ^ *X^-sin (k-l)%J 
cr^O, tp)=°E + 7r-7 / e n   - * !=— =? n cos op 

_',- .:.-;.«.v    ^ coeh^- cos Xn. t 

0*) 

With a procedure analogous to that used for the determination of this equation, the following 
solutions are obtained for the direct stresses correcponding to the remaining five values of a^: 

for XL > 1 and 7 > 0 
n        n 

VJI 



/  e 

rt=i= 

for' Dn< 1   and   7n< 0 

cosh ^n -:- cos %. 
ii cos WP (B^a^ 

o\ 

,|X L   T~ -Tjr t a^ je^coah kpn - cosli(k-l)p. 
tfi(0',) = flk+5wle  n ~  

»nJ + ^L« e^slnh kpn- 0inh(k' -«Pal 
n=^ 

cosh ijr   - cosh p 
n coa rup   (B|?b) 

for   D_ < 1   and   7_ > 0 
U IS    - 

a=2 

00 j^n .      , 
-«1/ k a3n!e   cosk kpß+coBhCk-ljp^, K^je^sinh kpn+sinh(k-l)pnJ 

cosh. \|/   + cosh p 
n coe up (B5c) 

for   Dn = 1   and   7n < 0 

for   D   = 1   and   r_ > 0 

CO 

(> - 1) • oJ> - (k - 1)] 
n COB BCD 

cosh il;   - 1 
'a 

ttj-Je^ + l) + atn!ke^ + <k - 1) j 

^ . cosh ^ + 1 
n COB xxp 

(B5d) 

(B5e) 

If the coefficients   t>       are considered,    cos np   is replaced hy   -sin nq>   in equations (Bl) 

to (B5)- 

S 
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Figure Zr Coordinate system for typical bay. 
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Figure 3.- Side view of cantilevered cylinder. 
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Figure 4.-Sign convention used in analysis. 
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Figure 6-Side view of cylinder 2 analyzed in reference 3. 
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